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Pandemic modeling, good and bad 
 

 

Abstract 

What kind of epidemiological modeling works well, and what kind doesn’t? This is 

determined by the nature of the target: the relevant causal relations are unstable across 

contexts, which tells against any modeling that assumes otherwise. I look at two influential 

examples from the Covid pandemic. The first example is the paper from Imperial College, 

London, that projected future infection rates under various policy scenarios, and that in 

March 2020 was influential in persuading the UK government to impose a lockdown 

(Ferguson et al 2020). Because it assumes stability, this first example of modeling fails: it 

carries no epistemic force at all. A different modeling strategy is required, one that is less 

ambitious but more effective. This is illustrated by the second example: the paper, also from 

Imperial College, London, that in December 2020 first estimated the transmissibility of the 

Alpha variant (Volz et al 2020). This second, contextual example of modeling works well.  
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1. Introduction 

What kind of epidemiological modeling works well, and what kind doesn’t? There has been a 

vast amount of epidemiological work in response to the Covid pandemic. I look at two high-

profile examples, each of which greatly influenced policy, in the UK and elsewhere. The first 

example is the CovidSim model in a paper by Neil Ferguson and colleagues at Imperial 

College, London (Ferguson et al 2020), the dire projections of which were a large factor in 

persuading the UK government to impose a national lockdown in March 2020 (a reversal of 

its previous policy). The second example is a paper from December 2020 by Erik Volz and 

colleagues (Volz et al 2020), also at Imperial College, London, which was the first to 

establish, and estimate, the greater transmissibility of the Alpha variant. 

 

The lesson of these examples is that taking a model to apply stably to many contexts fails. 

Epidemiology is not like Newtonian physics, where a single master model can be developed 

and applied. The reason is that its target causal relations are unstable. Unlike Newtonian 

laws, they do not hold reliably across cases, but instead hold only intermittently and 

unpredictably. Extensive case-specific investigation is needed each time to know which – if 

any – model applies, and so a contextual rather than master-model strategy is required. As we 

will see, this is why the models in (Volz et al 2020) succeed but the CovidSim model fails. 

 

Methodologically speaking, this distinction between contextual and master-model strategies 

is central. It cross-cuts previous distinctions in the epidemiological literature, such as that 

between model-types (agent-based, compartmental, curve-fitting), and that between 

interpreting models causally or non-causally (Fuller 2021). Each model-type, and both causal 

and non-causal models, can be developed and used in accordance with either a contextual or 

master-model strategy. It is the latter distinction that matters.  

 

‘Context matters’ is a familiar refrain across social sciences. In this paper, I connect it to an 

underlying contrast between stable and unstable relations, in order to explain when and why 

some modeling strategies work better than others. In Section 2, I set out the background 

philosophy of science, using a simplified, non-pandemic example. In Section 3, I discuss the 

CovidSim model. In Section 4, I discuss the Volz paper, and informal methods. 
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2. Philosophical background: two strategies 

Imagine two systems. In one, causal relations are stable and reliable; in the other, they are 

intermittent, often fleeting, and unpredictable. In this section, I explain why optimal 

methodology depends on which kind of system we are investigating (Northcott forthcoming). 

I illustrate with a simplified, non-pandemic example.  

 

Suppose we want to predict the motion of a newly discovered moon. We can apply a 

Newtonian two-body gravitational model, inputting the moon and parent planet’s masses and 

current motions. Something like this procedure is a staple of actual space exploration. Why 

does it work? The key reason is stability: the Newtonian model that has been successful 

elsewhere can be assumed still to apply, because gravity itself can be assumed still to be 

operating in the same way. In each new case, just re-apply the same Newtonian master 

model. Call this the Master-Model strategy.  

 

Master-Model works well even in the face of noise, which is when there are significant 

influences not captured by our model. For example, the moon’s motion may be deflected by 

gravity from a second moon, by impact with a comet, or (at least for a small moon maybe) by 

human interference, in which case, because of these disturbing factors, the Newtonian master 

model no longer predicts accurately. Nevertheless, the model still reliably identifies one of 

the factors influencing the moon’s motion, namely the gravitational interaction between 

moon and planet. In this sense, the model still explains ‘partially’ (Northcott 2013). To 

explain fully, or predict accurately, we must add in the effect of unmodeled disturbing 

factors. This strategy – of developing a master model and then in specific cases adding in 

disturbing factors as needed – was already advocated by Mill almost two centuries ago 

(1843). It has been a staple of philosophy of science about modeling, as many authors have 

focused on how models, even if idealized and even in the face of noise, may nevertheless 

succeed by isolating stable causal tendencies or arrangements (Cartwright 1989, Mäki 1992). 

 

In this way, a master model provides partial understanding even in the many cases when 

empirical accuracy is imperfect. Such an achievement, on this view, is even superior to mere 

empirical accuracy. Why? Because empirical accuracy in any particular case requires taking 

account of every local factor, no matter how sui generis or transient. But what is of greater 

interest to science, as a pursuit of systematic knowledge, is those factors that generalize – 

which is just what a master model captures. 

 

Master-Model relies on stability in two ways. First, stability is essential metaphysically. A 

master model is a reliable base onto which case-specific disturbing factors can be added, only 

because the relations it describes are stable. (Mill himself was well aware of this: he had in 

mind the practice of economics, where he thought core psychological tendencies such as 

seeking to increase one’s own wealth are indeed stable in the required way.) Second, stability 

is also essential epistemologically. If we are lucky, warrant to apply a master model comes 

from empirical success here and now: the Newtonian gravity model, for example, is given 

warrant by successfully predicting the motion of the moon. But often there is no empirical 

success here and now, because of noise. Then, warrant can come only indirectly, from 

empirical success elsewhere: we have faith, for example, that even when noise means it 

predicts badly here and now, still the Newtonian model has correctly identified one 

gravitational force at work. Why? Because of the model’s empirical success elsewhere.  



3 

 

But such indirect warrant is justified only when there is stability. It is only because gravity 

operates in the same way across cases that the Newtonian model’s warrant from elsewhere 

stays good over here. 

 

So, what Master-Model requires is stability; noise is irrelevant. Without noise, a master model 

is empirically accurate across many cases only when the relations it describes operate in a 

stable way. With noise, meanwhile, while a master model is no longer empirically accurate, 

now we may retreat to Mill’s strategy, confident that a master model does at least accurately 

describe some of the factors at work, even if additional disturbing factors are present too. 

Master-Model is effective with or without noise – but only given stability.  

 

But there is an alternative – for when stability is absent. To introduce it, imagine now a 

different moon example. This time, the ‘moon’ is a toy moon on a string, being carried by a 

child around a toy planet. How might we predict the motion of this moon? The best candidate 

here for a master model is probably something psychological, perhaps that a child will 

continue an action they are enjoying. Call this the Continue model. So, if the child has carried 

the toy moon around the planet for two ‘orbits’ happily, the Continue model predicts that the 

child will continue for another two orbits. This prediction will be right sometimes. Other 

times, it will not be: perhaps the child gets distracted, interrupted, or bored, or perhaps they 

are following instructions in an online science class (two orbits only), or perhaps they are 

playing a game with a friend (take it in turns to hold the moon). The underlying problem is 

lack of stability: the relations captured by the Continue model do not reliably apply across 

cases. Using just a single model is no longer effective. 

 

What alternative works better? Many models are available, some of which we might think of 

as loose hypotheses or rules of thumb as much as formal models. Different models describe 

how a child behaves: with friends, in a school class, when they are tired or bored, when they 

are interacting with a sibling, when they are affected by poverty or divorce or moving to a 

new house, and so on. The key is which of these models applies in any particular case. To 

discover that requires much case-specific work, looking for contextual clues and triggers: the 

character of this child, the nature of this household, is the child tired late in the day, is the 

child hungry, is the child – or friend or parent – generally frustrated after a prolonged 

lockdown, is the weather bright and warm or is it gray and miserable, and so on. In short, 

exactly the things a parent actually considers when trying to understand a child’s behavior. 

Instead of a single master model, we choose from many different models, case by case.  

 

Label this new methodological strategy, Contextual. Contextual is not against cross-

contextual models as such; indeed, the larger the available toolbox of such models, the better. 

Rather, Contextual implies two things. First, a change in balance: choosing between lots of 

alternative models rather than always going with one master model means that, overall, 

relatively more scientific effort must be devoted to local empirical investigation. Because no 

single model is assumed always to apply, we must be more sensitive to local detail, in order 

to select wisely from our toolbox. Second, a change in how models are developed. They 

should not be developed in the abstract, relying on real-world stability to keep them 

applicable. Instead, models must be developed by empirical refinement, learning by 

continually applying them to real-world cases (Ylikoski 2019). This might sound obvious, but 

it is often not done. We will see an example in the next section.  

 

Without stability, as noted earlier, the warrant of predictive success cannot be imported from 

elsewhere. That means accurate prediction is always required here and now. But without 
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stability, accurate prediction is harder: the toy moon’s motion is harder to predict than is the 

real moon’s. It is not always easy to know which model applies, and noise is ubiquitous. But 

that, as it were, is nature’s fault, not ours. Still, this is not a counsel of despair: we can get a 

decent grip on the toy moon’s motion sometimes, some predictions are more accurate than 

others, and some explanations are fuller and better warranted. It is up to us to find them. In 

toy-moon circumstances, Contextual is the best way to do that. 

 

In sum, what matters methodologically is stability. When the target relations are stable, it is 

best to investigate via a single master model (assuming an accurate one can be found), such 

as a Newtonian model of gravity. This strategy is effective even when empirical accuracy is 

disrupted by noise. But when target relations are unstable, local investigation is required each 

time to discover which of many candidate models might apply, and any model selected needs 

to be empirically accurate there and then (Northcott 2017). 

 

The core contrast, on this paper’s account, is between stable and unstable relations. This is 

not the same as the contrast between model monism and model pluralism (Teller 2001, Veit 

2019, Cartwright 2019). It is true that Master-Model is a form of monism and Contextual will 

often lead to pluralism. But in principle, one could have many different stability-based 

models, each capturing different stable relations that might be present. Conversely, one 

response to instability could be to stick monistically to a single context and single model. 

Further, Contextual gives its own, independent rationale for pluralism, namely that unstable 

relations may demand different models as those relations change. Contextual also informs the 

details of how model pluralism should be implemented. 

 

Armed with this philosophical background, turn now to the Covid pandemic. Which 

methodological strategy to choose? I answer: Contextual, not Master-Model. The target 

relations are unstable. As it were, the pandemic is more akin to toy-moon than to real-moon. 

 

3. Pandemic modeling: Against the Master-Model strategy 

 

3.1. The CovidSim model 

March 2020 was a key moment in the UK’s pandemic response. Infections were rising 

rapidly, and decisions had to be made in a hurry: how many would die given various policy 

interventions, or given no interventions at all? Several competing models sought to advise. 

An especially influential one was developed by Neil Ferguson and colleagues at Imperial 

College, London (Ferguson et al 2020). It was one of the main factors that persuaded the UK 

government to reverse its previous policy and to impose a national lockdown (Grey and 

MacAskill 2020, Ford 2020, Conn et al 2020). 

 

(Ferguson et al 2020) does not itself develop a new model; rather, it adapts a transmission 

model originally developed by the same team for influenza outbreaks. This Covid model – 

CovidSim – does not simply analyze the dynamics of population-level aggregates, in the 

manner of the classic SIR (Susceptible-Infectious-Recovered) model. It is more ambitious. It 

models interactions between individuals within the home, at school, at work, and in the 

community. (The model is a hybrid of agent-based and compartmental.) Various parameter 

values are estimated from actual data, such as age and household size, average class sizes and 

staff-student ratios, and workplace size and commuting distances, all referenced to population 

density data from the census. Covid-specific values are added for the virus’s incubation 

period, reproduction number (i.e., its ‘R-number’), and infection fatality rate.  
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Using CovidSim, (Ferguson et al 2020) analyzes two kinds of policy intervention. The first it 

labels Suppression: use restrictive measures to drive the virus’s R-number below 1 and so 

reduce case numbers, in the hope that vaccines or treatments with high efficacy are 

eventually developed. Until vaccines or treatments arrive, restrictive measures must be re-

imposed periodically because infections will rise again whenever measures are eased. The 

paper labels the second kind of intervention Mitigation: less strong restrictive measures, 

which seek to reduce the R-number but not all the way to below 1. Rather, the aim is to 

spread out the number of cases over time (compared to no intervention) so that at no point are 

health services overwhelmed, in the hope that immunity in those previously infected builds 

up gradually in the population, leading eventually to a decline in case numbers. This eventual 

decline would happen even without vaccines. The paper concludes, based on its simulations, 

that any feasible version of Mitigation would leave national Intensive Care Unit (ICU) 

capacity overwhelmed (by a factor of at least 10) and would inevitably lead to a very large 

number of deaths. Therefore, Suppression is preferred. Acceptance of this recommendation 

by the UK government was the paper’s major policy impact. 

 

In which methodological camp does CovidSim belong, Master-Model or Contextual? On one 

hand, it aims to be more sensitive to local variation than are traditional epidemiological 

models such as SIR, and accordingly it has many more parameters. But overall, it clearly 

belongs in the Master-Model category. It is intended to apply to many infectious-disease 

epidemics. In each application, as with the Newtonian model of gravity, predictions are 

generated by applying the same underlying model with the same structural relations and 

parameters; the only variation is in the values of those parameters.  

 

I will be critical below. But I want to acknowledge that the CovidSim model – an intricate 

piece of work – was produced, at speed, at a moment of national crisis, and was a sincere, 

well-intended attempt to guide policy. 

 

The critiques below are structured. The first, and most important, critique is the lack of 

empirical confirmation (Section 3.2). I then consider a fallback defense, namely that 

CovidSim can gain warrant even without empirical confirmation. I reject this fallback 

defense on the grounds, first, that relevant parameter estimates are inaccurate (Section 3.3), 

and second, that CovidSim omits important relations (Section 3.4). After thereby establishing 

that CovidSim lacks warrant, I diagnose why. The underlying problem is that it treats as 

stable relations that in fact are unstable (Section 3.5). This undercuts hope that the model can 

be augmented fruitfully in the future. I conclude that none of the benefits of Master-Model 

are realized in this case, and that CovidSim has no epistemic value (Section 3.6). 

 

3.2. Lack of empirical confirmation 

The most important difficulty is lack of empirical confirmation. As many have noted, 

assessing this needs care because the CovidSim model, in keeping with its policy-advisory 

role, gives only projections (Fuller 2021, Schroeder 2021). In other words, its predictions are 

conditional: how many infections, and how much pressure on health services, would there be 

given various policy combinations? Actual policy did not exactly replicate any of these 

combinations. Are criticisms of the model’s poor predictive record therefore unfair?  

 

In reply, two points. First, if a model really cannot be tested empirically, that is a bad thing, 

not a good thing. Confirmation will remain absent forever. The model will not receive 

empirical feedback or refinement, blocking off the main route to scientific progress.  
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Second, in fact, the CovidSim model can be tested, at least somewhat. For policy scenarios 

similar to what turned out to be the actual policy mix, were its projections approximately 

right? No, they were not. There has been some scholarly to and fro on this question (e.g., 

Winsberg et al 2020, 2021, van Basshuysen and White 2021a, 2021b), mainly with regard to 

infection numbers and ICU usage. Winsberg et al (2021) argues that the model greatly 

overestimated deaths and ICU usage in Sweden and Florida. Generally, other projections of 

CovidSim were also inaccurate, such as how quickly deaths would accumulate, how long 

policy measures would need to be maintained to avoid ICU capacity becoming overwhelmed, 

and how quickly policy measures would then need to be re-introduced to prevent case 

numbers rising too high again. A similar model also clearly applied poorly to places such as 

Africa, where infection numbers were far lower than predicted. Various anecdotal failures 

cement the same negative verdict. SAGE (the official scientific advisory body to the UK 

government), informed by CovidSim, commented on 20th March: ‘It is very likely that we 

will see ICU capacity in London breached by the end of the month, even if additional 

measures are put in place today.’ Additional measures were put in place, but London’s ICU 

capacity was not breached. And Neil Ferguson himself in late March 2020, after lockdown 

had been imposed, and again informed by the CovidSim model, predicted to Parliament that 

total UK deaths would top out at about 20,000, which of course sadly proved a huge 

underestimate. And there is no track record of predictive success in other epidemics to 

confirm the model independently. (Such success elsewhere would only be relevant anyway if 

we assumed – implausibly – that the target is stable enough for warrant to carry over from, 

say, an influenza epidemic to the Covid one.)  

 

Prediction in epidemiology is challenging generally (Broadbent 2013), so this poor 

performance is not surprising, and should not be jeered at. The point is only to note its 

epistemic implications. 

 

Might the CovidSim model accurately capture some of the causal relations involved, and so 

still be partially explanatory? That is certainly possible, metaphysically speaking, but the 

point is not terribly helpful. What is needed is reason to take CovidSim to be probative, for 

public policy and as a projection tool. And that means warrant.  

 

3.3. Unrealistic assumptions 

CovidSim is idealized, in other words it makes many false assumptions. Does this matter? 

Not necessarily. A lot of recent philosophy of science has addressed this question, and the 

consensus is that, roughly speaking, idealized models can explain when their falsity does not 

matter, in other words when their idealizations are true enough for the purposes at hand. The 

sting in the tail, though, is that empirical accuracy is still required at some point. A 

Newtonian model of gravity, for example, makes false assumptions, yet because it predicts 

accurately, and because for many purposes its assumptions are ‘approximately’ true, it is 

widely (and rightly) considered explanatory. But the predictive endorsement is essential, and 

that is just what CovidSim lacks. 

 

But there is an alternative defense. A model’s assumptions might be so compelling that 

empirical confirmation of the model’s results, while desirable, is not essential. Even if not 

confirmed empirically, on this view, a model retains some epistemic force as a guide for 

interventions, and it can explain partially. (Mill believed – mistakenly in my opinion – 

something similar of economic models built around the assumption that humans seek to 

maximize their wealth.) But for the CovidSim model, this defense is unconvincing, as we will 

see now. 
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A few of CovidSim’s parameters can be estimated relatively straightforwardly. Already, 

difficulties arise. Two of these ‘easier’ parameters are the virus’s R-number and its infection 

fatality rate. The model estimates these only to within an approximate range: 2.0 to 2.6 (R-

number) and 0.25% to 1% (infection fatality rate). But subsequent work suggests that, in both 

cases, the true values may well have been outside these ranges. In particular, in a society such 

as the UK without social distancing measures, a central estimate of the R-number (i.e., R0 for 

the original variant) is 3.0 (Billah et al 2020), while a central estimate of the infection fatality 

rate in the UK’s first wave is 1.1% (Brazeau et al 2020), albeit new treatments lowered this 

number later. Further, CovidSim’s estimates are meant to cover all of the policy scenarios 

that it analyzes, but they do not. The scenario of zero social policy interventions, for example, 

produced, for the UK case, the headline-catching projection of 510,000 deaths. Yet with zero 

policy interventions, ICU capacity (and hospitals generally) would likely have been swamped 

– by a factor of 30 according to CovidSim’s own estimates – so that only a tiny proportion of 

seriously ill Covid patients could have received hospital treatment. In that circumstance, 

given that the hospitalization rate in the UK of Covid patients in the first wave was about 4 to 

5%, the infection fatality rate would likely have been much above CovidSim’s estimate of 

1%.  

 

And, to repeat, these difficulties are with regard to the R-number and the infection fatality 

rate, two of the easier parameters to estimate. Other parameters required a lot more work. 

Some could be estimated only by means of educated guesses – because the data for anything 

more than that didn’t exist. If we require symptomatic Covid patients to stay at home, then 

how many days at home? It is estimated 7 days. What will be the effect on patients’ contacts? 

It is estimated that non-household contacts will decline by 75%, while within-household 

contacts remain unchanged. How many households will comply with this policy? It is 

estimated that 70% will. Values for other parameters are educated guesses too: that a 

symptomatic patient’s household members will comply with voluntary home quarantine 50% 

of the time; and that 75% of those over 70 will comply with social distancing, reducing their 

contact by 50% in workplaces and by 75% in the community, while increasing it by 25% 

within households. Educated guesses were made also about the impacts of social distancing 

of the entire population, and of schools and universities closing. How long these various 

measures last is also relevant. The model estimated that each would last three months, except 

for social distancing of those over 70, which would last four months.  

 

Inevitably, some of these educated guesses turned out to be more accurate than others. 

Notably, many policy measures, such as two-meter physical distancing, mandatory mask-

wearing in indoor public spaces, and closure of nightclubs, ended up in force in the UK for 

almost a year and a half – far longer than the three months assumed in the model.  

 

These details cast serious doubt, to say the least, on whether CovidSim’s assumptions are 

compelling. But perhaps its projections are not sensitive to the precise parameter estimates, 

so that all we need is for those estimates to be roughly correct? If so, then we need to know 

how roughly. (Ferguson et al 2020) does report one sensitivity analysis – but of very limited 

scope. This analysis shows that the main policy recommendation, namely in favor of the 

Suppression policy over the Mitigation one, is not sensitive to the precise values of the R-

number, the infection fatality rate, or the number of cases that triggers policy interventions. 

Or at least, the analysis shows this for values of these parameters that the paper considers 

plausible, such as between 2.0 and 2.6 for the R-number (remember, likely the R-number’s 

actual value was above this range). But there are many other parameters in the model: how 
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sensitive is the model’s main policy recommendation to those? And how sensitive are its 

detailed quantitative projections? Given the number of parameters in the model (over 900), it 

seems doubtful that a full sensitivity analysis for the main conclusions is even feasible. 

Certainly, none is given in the paper. (As with several shortcomings, Ferguson et al 2020 

does acknowledge this problem, but offers no solution.) 

 

Two projections of the CovidSim model do seem clearly to fail a sensitivity test. The first is 

the estimate of 510,000 UK deaths in the absence of any policy intervention. This projection 

assumes an infection fatality rate of about 1%. But, as noted above, if ICUs and hospitals are 

overwhelmed, the infection fatality rate would likely be much above 1%, increasing the total 

number of deaths in direct proportion. An infection fatality rate of 2%, for example, would 

raise the figure for deaths to 1 million. The second projection is that, even on the best 

Mitigation scenario, 250,000 would die in the UK. This projection is central to CovidSim’s 

main policy advice. But note how sensitive it is to a single assumption, by the paper’s own 

admission: ‘In the UK, this conclusion has only been reached in the last few days, with the 

refinement of estimates of likely ICU demand due to COVID-19 based on experience in Italy 

and the UK (previous planning estimates assumed half the demand now estimated) and with 

the NHS providing increasing certainty around the limits of hospital surge capacity’ (16, 

italics added). That is, the estimated number of deaths under Mitigation doubled almost 

overnight.  

 

More generally, later work suggests that CovidSim’s projections are highly sensitive not only 

to its estimates of parameter values, but also to omitted factors (see the next two sections), 

and to uncertainty about which conditions actually apply (Edeling et al 2020, Winsberg et al 

2021). This reinforces the point that the model’s own sensitivity analyses are not enough. 

True, time was of the essence, so there is a limit to how much sensitivity analysis was 

feasible. But this practical constraint does not alleviate the epistemic problem. 

 

3.4. Omitted relations 

Incorrect parameter estimates are only part of the problem. In addition, the CovidSim model 

also omits many relations. Consider just two mentioned by (Ferguson et al 2020) itself. First, 

degree of social contact is influenced by people’s spontaneous behavioral responses: high 

case numbers tend to lead to more social distancing spontaneously, and conversely low 

numbers lead to less distancing. Second, if schools are closed, this reduces health service 

capacity because some health workers who are also parents are forced to stay at home. Each 

of these omitted relations implies that parameter values assumed by the model to be constant 

– namely, levels of social contact and health service capacity – are, in fact, functions of other 

variables in the model. CovidSim’s assumed constant values for these parameters therefore 

clearly are not so compelling as to be self-warranting. 

 

3.5. No jam tomorrow: instability 

The above range of failures is true of rival models too. None is predictively endorsed, and all 

make unrealistic assumptions and omit relevant relations. Is there, nonetheless, still hope for 

Master-Model? Perhaps the pandemic is characterized by stability plus noise. If so, then even 

though no current master model has acquired empirical warrant, some future master model 

may do better. Perhaps any omitted relations could be added to a hypothetical grand super-

model and then given due weight case by case. 

 

But, alas, disappointment with Master-Model is likely to be permanent. Why? Because of 

instability. We have just noted one source of such instability: the omission by CovidSim of 
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some relations renders other, un-omitted relations – i.e., relations that are in the CovidSim 

model – unstable. But there is a more fundamental problem. Many key relations (not just 

parameter values) are unstable inherently, not just because they have been mis-specified by 

the model because of omissions. These relations vary across time, place, and virus type; they 

do not hold generally. By their very nature, relations that vary across cases in this way are not 

easily captured by a single master model, so Master-Model will always be unsuitable. It 

would be as if the way that gravity works varied from case to case, and gravity applied at all 

only to some planets and moons but not others. That would leave our Newtonian two-body 

model inevitably inadequate in many cases, at best one modeling option among many.  

 

Consider, say, border controls – a key policy tool for many countries. How do border controls 

impact on infection rates? The answer is awash with context-specific details, varying with the 

idiosyncrasies of a country’s borders, trading flows, location on transit routes, number of 

residents with ties abroad, number of border personnel and hotels, not to mention the nature 

and evolution of the relevant virus or disease. When should border controls be triggered, for 

how long maintained, how long should quarantine periods be, and what exceptions allowed 

(some countries? only some freight? airline personnel?)? All of these factors varied between 

countries that implemented border controls, and varied over time.  

 

Similar remarks apply to test and trace programs. Compare the programs needed for Covid 

with those needed for SARS in 2003, or, within the UK, compare outsourced private 

operations with those run through local councils’ public health officers. Similar remarks 

apply to public health messaging too. Compare, say, the very different media and political 

environments in Singapore, UK, and USA. 

 

None of border controls, testing programs, or public messaging were modeled by CovidSim. 

But many relations that were modeled by it are likely unstable too. Popular resistance to 

lockdown measures has varied greatly across countries, over time, and much more for some 

measures than for others; local factors explain the differences, and thereby impact on the key 

factor of how long a policy can be sustained. The value of the R-number is not a constant but 

rather is a function of environments, behaviors, and political decisions. So, too, is the time 

between infection and transmission. (Ferguson et al 2020) states (8) that ‘stopping mass 

gatherings is predicted to have relatively little impact’; but while this may be true for 

influenza, community transmission of Covid seems to be powered disproportionately by large 

‘super-spreader’ events, which implies that stopping mass gatherings does have a large 

impact after all. As a result, CovidSim missed the disproportionate number of deaths in 

nursing homes and other care facilities. The relevant relations are unstable across influenza 

and Covid epidemics. (More generally, CovidSim omits social network effects, and therefore 

misses potential targeting of interventions at particular hub actors (Manzo 2020).) 

 

This underlying problem of instability is not a result of the Covid virus – unlike planetary 

orbits – being new to science: the problem will not go away with advancing knowledge. New 

knowledge certainly helps with Contextual modeling but, if anything, it causes the target 

relations here to become less, not more, stable. The efficacy of government restrictions, for 

example, may change as it is learnt how to implement them better, as vaccines become 

available, or as public obedience wanes. 

 

For comparison, in the gravity example the moon’s position and velocity vary continuously, 

but this is not a problem because a Newtonian model tells us not just the effects of that 

variation but also when to expect it. There is no ‘surprise’ variation in gravity’s influence that 
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requires knowledge from beyond the model to predict and understand. But the same is not 

true of the pandemic. For instance, the determinants of the R-number’s value, and the precise 

relations between the R-number and other components of the CovidSim model, are each 

unstable across cases because they depend on contextual factors such as virus characteristics, 

local history, and local politics. We require knowledge from beyond the model itself to 

update the model’s correct form. 

 

3.6. Verdict: Master-model and efficiency 

Master-Model’s most important methodological virtue is efficiency: a master model is a 

short-cut to successful predictions, interventions, and explanations. But with CovidSim, this 

efficiency gain no longer exists. Too many target relations vary case by case, and so Master-

Model is misconceived from the start. This is the fundamental problem.  

 

Certainly, the pandemic prediction models so far have been nowhere near the efficient 

Master-Model ideal. Even if predictive success were achieved – which it hasn’t been – it 

could only be via so much contextual work each time that it defeats the point of Master-

Model in the first place. Indeed, for CovidSim, the required contextual work is so great that 

in practice it is doubtful it can be done. Corners were unavoidably cut. The large number of 

target relations that are unstable suggests that these difficulties are permanent. In the next 

section, I discuss how to follow the Contextual strategy instead. 

 

Where does this leave the CovidSim model? In my view, its advice carries no epistemic 

weight at all. Its predictions have a track record of inaccuracy, and the model is not 

empirically confirmed in any other way. It omits many important relations, many of the 

relations it does include are likely mis-specified, and many parameter values are estimated 

inaccurately. No sensitivity analysis reassures us that these errors are not fatal. According to 

no philosophical theory of explanation does such a model explain (Northcott and 

Alexandrova 2013), which here means we have no warrant to think the model has captured 

the true causal structure, and so no warrant to trust it as a guide to interventions.  

 

The literature on idealized models does offer two other potential defenses, but neither of them 

helps here. The first defense is that, even when lacking empirical warrant, idealized models 

may give ‘how-possibly explanations’: rigorous accounts of how things work in a 

hypothetical world in which the model’s assumptions are true. The hope is that how-possibly 

explanations shed indirect light on the actual world, perhaps by illustrating how things could 

be or might have been (Grüne-Yanoff 2009, Aydinonat 2008, Forber 2010). But (Ferguson et 

al 2020) explicitly aims to model the actual world – to its credit, given that its goal is to 

advise government policy. A second defense of idealized models is that, even when they do 

not themselves predict or explain, still they might be useful heuristically, perhaps by directing 

our attention to important factors otherwise neglected or overlooked (Alexandrova 2008, 

Alexandrova and Northcott 2009). But CovidSim actively turns our attention away from key 

omitted factors. And it does not guide us towards the kind of work that, as we will see now, 

actually delivers. 

 

In a crisis, speed matters. (Generally, a constraint on optimal methodology is the context in 

which a question is being investigated.) So, Master-Model does carry a pragmatic advantage: 

a model is available “off the shelf”, with less need for time-consuming local investigations. 

And CovidSim was certainly adapted quickly from its influenza origins. But not only speed 

matters. If a model lacks epistemic force, that defect trumps speed.  
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The CovidSim model influenced policy when it shouldn’t have. It might be that, by inspiring 

a lockdown, it influenced policy for the better, and so on this occasion it had highly beneficial 

consequences. If so, then that was by luck. Judgment that the new policy was indeed better 

should not be based on CovidSim, but rather must be based on accumulated experience from 

many countries, assessed by other methods. 

 

4. Pandemic modeling: In favor of the Contextual strategy 

Turn to a more fruitful path. Any attempt to establish causal relations must work with a 

‘model’, i.e., with a posited causal structure, even if just a singular causal claim. The 

distinction between the Contextual and Master-Model strategies does not lie in whether they 

use models – both do that – but rather lies in the way that they use them. Contextual urges 

that model development be tied closely to empirical feedback, and that, in contrast to one-

size-fits-all, choice of model be carefully tailored to particular target. This is best shown by 

example. 

 

4.1. Transmissibility of the Alpha variant 

The paper that first established the higher transmissibility of the Alpha variant was written in 

December 2020 by Erik Volz and colleagues at Imperial College, London and elsewhere. 

Unlike those of (Ferguson et al 2020), this paper’s conclusions are compelling.1 Even though 

they apply directly only to one instance, because they are established reliably they serve as 

building blocks for other studies to extend to other times and places. That is Contextual in 

action. 

 

(Volz et al 2020) has a narrower goal than (Ferguson et al 2020). It seeks to estimate the 

transmissibility of the then-new B.1.1.7 Covid ‘variant of concern’, i.e., what the WHO later 

designated the Alpha variant. All of its data are from England between October and early 

December 2020. Experiments were not feasible, so the paper conducts various observational 

studies, combining epidemiological and genetic data. It pursues five independent lines of 

analysis, each of which turns out to concur on roughly the same conclusion: that Alpha is 

more transmissible than the original variant, to the extent that it increases the virus’s R-

number (in England, in this period) by between 0.4 and 0.7. These five lines of analysis are: 

 

1. The time and location of almost 2,000 Alpha cases from random population sampling was 

tracked, along with almost 50,000 non-Alpha samples. This revealed the increasing 

prevalence of Alpha relative to the original variant. To infer the growth difference per 

generation, a simple model was used of how the populations of two viruses with different R-

numbers evolve. This model required the paper to estimate the virus’s generation time (6.5 

days) and the R-number at that time of the original variant (1.0). 

 

2. The increasing prevalence of a particular genetic feature associated with Alpha – absence 

of the so-called S-gene – was traced, based on data from national positive Covid test results. 

This tracing was possible because, conveniently, almost a third of positive test samples in 

November and December 2020 recorded the presence or absence of the S-gene. The strength 

of association between Alpha and absence of the S-gene itself changed over time (because 

some non-Alpha variants also lack the S-gene), and this variation had to be modelled as a 

 
1 One of (Volz et al 2020)’s co-authors is Neil Ferguson, and several other of the co-authors, including Erik 

Volz, are also co-authors of (Ferguson et al 2020). (Some are co-authors of Brazeau et al 2020 as well.) So, my 

earlier criticisms of (Ferguson et al 2020) are certainly not ad hominem! The Imperial College unit is a great 

center of expertise. Nonetheless, as will become clear, I think the epistemological difference between (Volz et al 

2020) and (Ferguson et al 2020) is stark, far beyond any difference acknowledged by their authors.  
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function of the date and area of the test sample. Overall, it turned out that the spread of Alpha 

inferred in 1 and 2 correspond closely. 

 

3. The pattern of geographical expansion (as opposed to national prevalence) of absence of 

the S-gene was tracked, again using data from national positive Covid test results, and again 

inferring Alpha prevalence by means of the intermediary model mentioned in 2. The result 

was consistent with a greater transmissibility for Alpha, to a similar degree as calculated in 1 

and 2. 

 

4. A positive correlation was established between the estimated prevalence of Alpha, and 

independently derived estimates of the overall Covid R-number at different times and places. 

The paper ran a series of statistical regressions, using different measures of Alpha prevalence, 

different subdivisions of areas, and both frequentist and Bayesian estimation techniques. 

Quantitative estimates could be derived for the increase in the R-number associated with 

Alpha. These estimates were roughly consistent with those derived from the other lines of 

analysis. 

 

5. A semi-mechanistic genetic model was fitted to the case numbers for Alpha and the 

original variant, to derive from many separate regressions further independent estimates of 

the R-numbers for each. These new estimates again roughly agreed with those derived from 

the other lines of analysis. 

 

(Volz et al 2020) has two distinct goals. One is to estimate Alpha’s greater transmissibility 

quantitatively. But a second, prior goal is to establish the qualitative claim that Alpha is more 

transmissible at all. Could Alpha’s increased prevalence be explained in some other way? 

 

The area-level data enabled one rival explanation to be ruled out, namely that Alpha might 

have a shorter incubation period. For a given transmissibility, a shorter incubation period 

leads a variant’s case numbers to be more volatile: they increase more quickly than otherwise 

when R > 1, and decrease more quickly than otherwise when R < 1. But the data showed that, 

in areas where R < 1, Alpha cases did not decline faster than those of the old variant, contrary 

to the hypothesis of a shorter incubation period. On that hypothesis, random variation should 

also have meant Alpha cases going up and old variant cases going down in the same number 

of areas as the opposite pattern of Alpha cases going down and old variant cases going up. 

But in reality, there were plenty of areas with the former pattern but almost none with the 

latter – consistent with Alpha being more transmissible but not with it having a shorter 

incubation period. The rival explanation is disconfirmed. 

 

(Volz et al 2020) also mentions a second rival explanation, namely that increases in 

frequency are due to chance rather than being more transmissible. This might be because of 

founder effects, which are especially likely if a variant is introduced from overseas. But 

unlike with some other variants whose prevalence increased, Alpha expanded from within 

England. In addition, the correlation between greater R-numbers and greater Alpha 

prevalence was observed in multiple regions. This tells against the chance hypothesis. 

 

No other rival explanations are mentioned, and it is hard to think of plausible ones. The 

qualitative conclusion that Alpha is more transmissible is therefore well supported.  

 

Overall, (Volz et al 2020) is excellent work. How does it succeed? First, it uses models that 

are relatively simple, and second, it uses them in a suitably contextual way. This allows it to 
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be confident that its models are empirically accurate, as the details above show. In the paper’s 

own words (18): ‘We focused on relatively simple, data-driven analyses using parsimonious 

models making parsimonious assumptions, rather than, for instance, attempting to model the 

long-term transmission dynamics of [the Alpha and original variants] more mechanistically.’ 

In other words, it did not follow the example of the CovidSim model – wisely. If more 

ambitious scope means loss of empirical confirmation, then it is a mistake.  

 

To illustrate, consider the model used in (Volz et al 2020)’s first line of analysis. This model 

concerns how the relative prevalence of two viruses with different R-numbers changes over 

time, and it requires only two parameters to be estimated: the virus’s incubation period, and 

the R-number of the original variant. The model is disanalogous to CovidSim in several other 

respects too. Most importantly, it has a history of empirical success. Examining such a 

history is the best way to learn in what conditions a model is likely to be successful again 

(Ylikoski 2019). The model captures the dynamics of virus reproduction when there are no 

complicating social factors. Experience gives us confidence that there was no significant 

interference by social factors in this case. Social factors do enter the model indirectly, via the 

value of the R-number, but there were good independent estimates of this R-number’s value, 

and also good reason to think that that value was relatively constant across the relevant time 

period and geographical areas. The virus’s incubation period was also well known 

independently, (Volz et al 2020) argues. And straightforward sensitivity analysis showed that 

the results were not unduly hostage to remaining small uncertainties.  

 

For these reasons, confidence in this model is warranted here, unlike for CovidSim. Similar 

remarks apply to the other models used in (Volz et al 2020). And similar remarks apply also 

to many other excellent studies carried out during the pandemic. What matters each time is 

that a model is developed and used in accordance with Contextual rather than Master-Model: 

choice of model must be carefully justified each time, and empirical confirmation is crucial 

for that.  

 

The important difference between the (Volz et al 2020) and (Ferguson et al 2020) papers is 

not that in the former models were used for retrospective estimation and in the latter for 

prediction. Rather, it is that the models in (Volz et al 2020) have empirical warrant whereas 

CovidSim does not, which in turn is because of the different methodological approaches.  

 

There is an important caveat, though: in accordance with Contextual, predictions are 

warranted only when we have good reason to believe that the models that generated them still 

apply. (Volz et al 2020) acknowledges this (17): ‘these estimates of transmission advantage 

apply to a period where high levels of social distancing were in place … extrapolation to 

other transmission contexts … requires caution.’ This is wise, because whenever relations are 

unstable, extrapolation of results requires caution, and R-numbers are known to be sensitive 

to many environmental changes. We are not in Newton’s world, so to speak. And indeed, it 

seems that Alpha’s transmissibility advantage did not stay the same after the period of the 

study (Lemoine 2021a). Further, there is a repeated pattern in the pandemic of new variants 

enjoying large initial transmissibility advantages that subsequently diminish sharply, again 

suggesting caution when extrapolating initial calculations (Lemoine 2021b). 

 

Some are skeptical that Alpha’s transmissibility advantage is stable even within the narrow 

range of times and places that (Volz et al 2012) focuses on (Lemoine 2021b). One reason for 

that skepticism is a pattern of widely varying R-numbers across English regions at a given 

time, over and above measurement error. Against that, (Volz et al 2020)’s quantitative 
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conclusions are obviously strengthened by the convergence of five independent lines of 

inquiry. This triangulation virtue is distinct from the paper’s modeling virtues. Of course, 

those modeling virtues are what makes each line of inquiry persuasive individually, and if 

component lines of inquiry are not persuasive individually then it is dubious that triangulation 

retains its epistemic force (Odenbaugh and Alexandrova 2011, Betz 2015). And perhaps there 

is convergence merely on the contemporary average R-number in England, hiding local 

variation. For our purposes, what matters is that, regardless of the exact credence given to 

(Volz et al 2020)’s quantitative conclusion, it is clear that that credence should be 

proportional to the extent to which the conclusion enjoys local empirical support, which in 

turn depends on the extent to which it is based on methods that follow Contextual. 

 

4.2. Informal methods 

Sometimes, the only methods available are informal ones. Consider border controls again. 

Their impact on infection rates varies, and how infection rates are impacted by other things 

varies too. The same is true of other target variables besides infection rates. These 

instabilities mean that master models are ill-suited to evaluating the impact of border 

controls. (I am not aware of any actual such model; the CovidSim model, recall, omitted 

border controls altogether.)  

 

In which case, what to do? Only one option remains, namely, no formal model at all. This 

amounts to causal reasoning based on evidence, including quantitative evidence, but done in 

the manner of careful historians or qualitative social scientists. The ‘models’ in these cases 

may be no more than simple causal claims, such as “border controls reduce Covid cases”. 

More realistically, the causal claims will be more detailed: “if border controls are organized 

in manner X at stage Y of the pandemic, then in countries with a high throughput of travelers 

they reduce Covid cases by Z”. How to confirm such claims? In effect, we approximate 

natural experiments as best we can, or make single-case causal inferences that rely on 

background knowledge to evaluate the implicit counterfactuals. (Grépin et al 2020, for 

example, reviews early work on border controls to support the claim that, at the beginning of 

the Covid pandemic, travel restrictions around Wuhan reduced the importation of cases 

internationally – contrary to the experience of influenza outbreaks.) Just because these 

methods are more informal does not mean they are not empirical. To be sure, inference might 

be more difficult when we cannot use methods such as controlled experiments. But the 

perfect should not be the enemy of the good. Informal methods can still carry warrant, on 

pain of being a complete skeptic about large areas of scientific – and indeed everyday – 

inquiry. It is by informal methods that best practice about border controls has been 

established and shared, such as operational details of hotel quarantine, or how border 

requirements should vary depending on a traveler’s country of origin, or how their impact 

varies depending on current case numbers and on whether those numbers are rising or falling. 

Informal models, and informal confirmation procedures for them, are certainly preferable to 

the CovidSim model. The key epistemic criterion is the same for all models alike, formal or 

informal: empirical confirmation. 

 

Similar remarks apply widely. Consider the vexed issue of lockdowns: what is their true 

impact on infection numbers, economic output, and mental health? There has been a huge 

amount of work about this, of course, and reviewing it is beyond the scope of this paper. I 

mention lockdowns only to point out several ways in which this paper’s discussion bears on 

the matter. First, likely there is no univocal answer. The impact of lockdowns varies with the 

exact lockdown regulations being imposed, by whom, on what community, and at what stage 

of the pandemic. During a recession, during winter or summer, in an urbanized or rural 
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country, in a rich or poor one? In a country with lots of gig workers, with lots of multi-

generational households, with a history of suspicion of government? On a population that is 

fit, with low levels of co-morbidities, with access to high ICU capacity and extensive primary 

care? Even within a single country – the UK – the impact of the same lockdown regulations, 

at the same stage of the pandemic, showed big differences across regions and sectors. Second 

– which follows from the first – Contextual methods are required. The impact of lockdowns 

should not be assessed by applying a single master model such as CovidSim (even though 

this was what actually happened with the original lockdown decision in the UK). Third, 

might there nonetheless be some rule of thumb that is relatively stable, perhaps that 

lockdowns’ effects have been overrated or underrated? Perhaps, perhaps not. The Contextual 

methodology says that that question can be answered only by close empirical analyses, in the 

manner of (Volz et al 2020).  

 

Because different countries vary so much in relevant ways, it would not be helpful to run a 

statistical regression across them to assess the impact of lockdown policy. Cross-country 

comparisons need to be more nuanced. For the same reason, a hypothetical randomized trial 

would tell us little. Methods such as regressions and trials are very effective – but only when 

the target relations are stable. That’s why they work well for assessing vaccines but not for 

assessing lockdowns. 

 

Similar remarks apply to many other policy questions: how much to test, what mask-wearing 

and social distancing to require, whether to close schools and universities, how to regulate 

those asked to self-isolate, how to contact-trace, and how to allocate medical equipment. 

What can be learned by comparing the experiences of different countries? Which local details 

matter, and which don’t? Informal methods are the way to find out (Han et al 2020). 

 

How might informal methods have tackled (Ferguson et al 2020)’s original task, namely to 

project the number of infections under various policy scenarios? Such methods could have 

been applied to assess Covid developments in China, Italy, and other countries, experience of 

previous epidemics, and background knowledge of local health systems and political cultures. 

Even at the beginning of the pandemic, there was plenty of such evidence (Lipsitch 2020). 

Still, most likely only very rough projections could be justified initially. If so, it is better to 

accept that truth than to imagine that more precise projections are trustworthy. If a model is 

unwarranted then it is not useful, and that does not change just because an epistemic situation 

is difficult and there are few alternatives. 

 

There is continuity between informal methods and the methods of (Volz et al 2020). How 

formal a model is, and how formal the techniques are by which to test whether a model 

applies, may vary. But both informal methods and (Volz et al 2020) share the same 

Contextual methodology, and that is what matters. 

 

Recent work in philosophy of science emphasizes ‘middle-range theories’ (Cartwright 2020): 

such theories are, roughly speaking, models of non-universal scope that are applied 

contextually in conjunction with local, often informal knowledge. This too is an instance of 

the Contextual methodology.  

 

5. Conclusion 

The Master-Model strategy does not work for the Covid pandemic. No candidate master 

model boasts the needed empirical success, and likely none will: the real-world targets are 
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too unstable. A different modeling strategy is required. The same conclusion will apply 

whenever target relations are fragile, which likely means pandemics generally. 

 

This conclusion is not of mere ivory-tower interest. Pursuing Master-Model is positively 

harmful when it diverts resources away from a superior Contextual alternative. Facing a 

policy emergency in March 2020, the initial contrast was between relying on models such as 

CovidSim versus relying only on informal methods. At the beginning of the pandemic, SAGE 

was criticized for being top-heavy with mathematical modelers rather than empirical field 

scientists (Ford 2020, Costello 2020). By the time this began to be (slightly) rectified, fateful 

policy mistakes had already been made: relative neglect of on-the-ground experience from 

other countries and from practitioners at home, is widely alleged to have slowed the provision 

of protective equipment to health workers, and to have slowed the setting up of a testing 

system. 

 

We know a lot more now than at the beginning of the Covid pandemic, so both projections 

and policy responses are far better grounded than they were. But this welcome progress has 

not come from grand, one-size-fits-all models. Rather, it has come from a huge accumulation 

of knowledge gained by informal methods and by modeling that is empirically confirmed. 

That is the way forward. Contextual was, and is, required. 
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